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Abstract

Consider a decentralized, dynamic market with an infinite horizon and participa-
tion costs in which both buyers and sellers have private information concerning their
values for the indivisible traded good. Time is discrete, each period has length δ,
and each unit of time continuums of new buyers and sellers consider entry. Traders
whose expected utility is negative choose not to enter. Within a period each buyer
is matched anonymously with a seller and each seller is matched with zero, one,
or more buyers. Every seller runs a first price auction with a reservation price
and, if trade occurs, both the seller and winning buyer exit the market with their
realized utility. Traders who fail to trade continue in the market to be rematched.
We characterize the steady-state equilibria that satisfy a subgame perfection cri-
terion. We show that, as δ converges to zero, equilibrium prices at which trades
occur converge to the Walrasian price and the realized allocations converge to the
competitive allocation. We also show existence of equilibria for δ sufficiently small.
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1 Introduction

The frictions of asymmetric information, search costs, time discounting, and strategic
behavior interfere with efficient trade. Nevertheless economists have long believed that
for private goods’ economies the presence of many traders overcomes both these im-
perfections and results in convergence to perfect competition. Two classes of models
demonstrate this. First, double auction models in which traders’ costs and values are
private exhibit rapid convergence to the competitive price and the efficient allocation
within a one-shot centralized market. Second, dynamic matching and bargaining models
in which traders’ costs and value are common knowledge also converge to the compet-
itive equilibrium. The former models are unrealistic in that they assume traders who
fail to trade now can not trade later. Tomorrow (almost) always exists for economic
agents. The latter models are unrealistic in assuming traders have no private informa-
tion. Information about a trader’s cost/value (almost) always contains a component
that is private to him. This paper’s contribution is to formulate a natural model of dy-
namic matching and bargaining with two-sided incomplete information and show that
it converges to the competitive allocation and price as the frictions vanish.

An informal description of our model and result is this. An indivisible good is traded
in a market in which time progresses in discrete periods of length δ and generations of
traders overlap. Each unit of time traders who are active in the market incur the frictions
of a participation cost κ and a discount rate β. Thus the per period participation cost
is δκ, the per period discount factor is e−βδ, and the two frictions vanish as the period
length becomes short and converges to zero. Each period every active buyer randomly
matches with an active seller. Depending on the luck of the draw, a seller may end up
being matched with several buyers, a single buyer, or no buyers. Each seller solicits
a bid from each buyer with whom she is matched and, if the highest of the bids is
satisfactory to her, she sells her single unit of the good and both she and the successful
buyer exit the market. A buyer or seller who fails to trade remains in the market, is
rematched the next period, and tries again to trade.

Each unit of time a large number of potential sellers (formally, measure 1 of sellers)
considers entry into the market along with a large number of potential buyers (formally,
measure a of buyers). Each potential seller independently draws a cost c in the unit
interval from a distribution GS and each potential buyer draws independently a value
v in the unit interval from a distribution GB. Individuals’ costs and values are private
to them. A potential trader only enters the market if, conditional on his private cost or
value, his equilibrium expected utility is at least zero. Potential traders whose expected
utility is negative elect not to participate.

If trade occurs between a buyer and seller at price p, then they exit with their gains
from trade, v − p and p− c respectively, less their accumulated participation costs, all
discounted back at rate β to the time that they entered. If δ is large (i.e., periods are
long), then participation costs accumulate in a short number of periods and a trader
who chooses to enter must be confident that he can obtain a profitable trade without
much search. If, however, δ is small, then a trader can wait through many matches
looking for a good price with little concern about participation costs and discounting
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offsetting his gains from trade. This option value effect drives the convergence and puts
pressure on traders on the opposite side of the market to offer competitive terms. As δ
becomes small the market for each trader becomes, in effect, large. This induces traders
to reveal that private information that is necessary for an efficient allocation, just as in
the double auction literature.

We characterize steady state equilibria for this market in which each agent maximizes
his expected utility going forward. We show that, as the period length goes to zero,
all such equilibria converge to the Walrasian price and the competitive allocation. The
Walrasian price pW in this market is the solution to the equation

GS (pW ) = a (1−GB (pW )) , (1)

i.e., it is the price at which the measure of entering sellers with costs less than pW
equals the measure of entering buyers with values greater than pW . If the market were
completely centralized with every active buyer and seller participating in an exchange
that cleared each period’s bids and offers simultaneously, then pW would be the market
clearing price each period. Our precise result is this. Among active traders, let c̄δ and
vδ be the maximal seller’s type and minimal buyer’s type respectively and let [pδ, p̄δ] be
the range of prices at which trades occur. Also let cδ be the smallest bid acceptable to
any active seller. As δ → 0, then cδ, c̄δ, vδ, pδ, and p̄δ all converge to the same limit p.
In the steady-state, the only way for the market to clear is for this limit p to be equal
to the competitive price pW . That the resulting allocations give traders the expected
utility they would realize in a perfectly competitive market follows. Finally, we show
that these equilibria exist if δ is sufficiently small.

A substantial literature exists that investigates the non-cooperative foundations of
perfect competition using dynamic matching and bargaining games.1 Most of the work
of which we are aware has assumed complete information in the sense that each partic-
ipant knows every other participant’s values (or costs) for the traded good. The books
of Osborne and Rubinstein (1990) and Gale (2000) contain excellent discussions of both
their own and others’ contributions to this literature. Papers that have been particu-
larly influential include Mortensen (1982), Rubinstein and Wolinsky (1985, 1990), Gale
(1986, 1987) and Mortensen and Wright (2002). Of these, our paper is most closely re-
lated to the models and results of Gale (1987) and Mortensen and Wright (2002). The
two main differences between their work and ours are that (i) when two traders meet
they reciprocally observe the other’s cost/value rather than remaining uninformed and
(ii) the terms of trade are determined as the outcome of a full information bargaining
game rather than an auction. The first difference–full versus incomplete information–
is fundamental, for the purpose of our paper is to determine if a decentralized market
can elicit private valuation information at the same time it uses that information to
assign the available supply efficiently. The second difference is natural given our focus
on incomplete information.

1There is a related literature that we do not discuss here concerning is the micro-structure of
intermediaries in markets, e.g., Spulber (1999) and Rust and Hall (2002). These models allow entry of
an intermediary who posts fixed ask and offer prices and is assumed to be large enough to honor any
size buy or sell order without exhausting its inventory or financial resources.
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The most important dynamic bargaining and matching models that incorporate
incomplete information are Wolinsky (1988), De Fraja and Sákovics (2001), and Serrano
(2002).23 To understand how our paper relates to these papers, consider the following
problem as the baseline. Each unit of time measure 1 sellers and measure a buyers enter
the market, each of whom has a private cost/value for a single unit of the homogeneous
good. The sellers’ units of supply need to be reallocated to those traders who most highly
value them. Whatever mechanism that is employed must induce the traders to reveal
sufficient information about their costs/valuations in order to carry out the reallocation.
The static double auction literature–perhaps most notably Satterthwaite and Williams
(1989) and Rustichini, Satterthwaite and Williams (1994) in the independent private
values case–shows that even moderately-sized centralized double auction held once
per unit time solves this problem essentially perfectly by closely approximating the
Walrasian price and then using that price to mediate trade.4

Given this definition of the problem, the reason why Wolinsky (1988), De Fraja and
Sákovics (2001), and Serrano (2002) do not obtain competitive outcomes as the frictions
in their models vanish is clear: the problems their models address are different and, as
their results establish, not intrinsically perfectly competitive even when the market be-
comes almost frictionless. Wolinsky’s model relaxes the homogeneous good assumption
and does not fully analyze the effects of entry/exit dynamics. De Fraja and Sákovics’
model’s entry/exit dynamics do not specify fixed measures of buyers and sellers entering
the market each unit of time and therefore have no market clearing force moving the
market towards a supply-demand equilibrium. Serrano’s model embeds a discrete-price
double auction mechanism in a dynamic matching framework. In his model, however,
there are no entering cohorts of traders. Consequently, the option-value effects become
progressively smaller as the most avid buyers and sellers leave the market through trad-
ing. Serrano finds that “equilibria with Walrasian and non-Walrasian features persist.”
These papers complement our investigation of sufficient conditions for convergence be-
cause, as we discuss in the conclusions, they implicitly identify necessary conditions for
convergence and bring closer the goal of a full characterization of convergent matching
and bargaining models.

The next section formally states the model and our main result establishing that the

2Butters in an unfinished manuscript (circa 1979) that was well before its time considers convergence
in a dynamic matching and bargaining problem. The main differences between our model and his are (i)
he assumes an exogenous exit rate instead of a participation cost, (ii) traders who have zero probability
of trade participate in the market until they exit stochastically due to the exogenous exit rate, and (iii)
the matching is one-to-one and the matching probabilities do not depend on the ratio of buyers and
sellers in the market. We thank Asher Wolinsky for bringing Butters’ manuscript to our attention after
we had completed an earlier version of this paper.

3 In a working paper Satterthwaite and Shneyerov (2003) show convergence in a dynamic matching
and bargaining model that has no participation costs, but instead has the alternative friction of a fixed,
exogenous, per unit time rate of exit among active traders. Market clearing is more subtle in this
alternative model and as a consequence equilbria in it have a different structure than the equilibria we
study in this paper.

4Another example of a centralized trading institution is the system of simultaneous ascending-price
auctions, studied in Peters and Severinov (2002). They also find robust convergence to the competitive
outcome.
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Walrasian price robustly emerges as the market becomes increasing frictionless. Section
3 derives basic properties of equilibria and Section 4 proves our main result. Section 5
shows existence of equilibrium if δ is sufficiently small by identifying a class of full-trade
equilibria and proving that, for sufficiently small δ, such equilibria exist and are unique.
Section 7 concludes with a discussion of some important possible extensions that merit
future attention.

2 Model and theorem

We study the steady state of a market with two-sided incomplete information and an
infinite horizon. In it heterogeneous buyers and sellers meet once per period (t =
. . . ,−1, 0, 1, . . .) and trade an indivisible, homogeneous good. Every seller is endowed
with one unit of the traded good and her cost is c ∈ [0, 1]. This cost is private information
to her; to other traders it is an independent random variable with distribution GS and
density gS. Similarly, every buyer seeks to purchase one unit of the good and his value
is v ∈ [0, 1]. This value is private; to others it is an independent random variable
with distribution GB and density gB. Our model is therefore the standard independent
private values model. We assume that the two densities are bounded away from zero:
a g > 0 exists such that, for all c, v ∈ [0, 1], gS(c) > g and gB(v) > g.

The strategy of a seller, S : [0, 1]→ R∪ {N} , maps her cost c into either a decision
N not to enter or a minimal bid that she is willing to accept. Similarly the strategy of
a seller, B : [0, 1]→ R∪ {N} , maps his value v into either a decision N not to enter or
the bid that he places when he is matched with a seller.

The length of each period is δ. Each unit of time measure 1 of potential sellers and
measure a of potential buyers consider entry where a > 0. Potential traders receive
utility of 0 if they choose not to enter. This means that each period measure δ of
potential sellers and measure δa of potential buyers consider entry. A period consists
of five steps:

1. Entry occurs. A type v potential buyer becomes active only if B (v) 6= N and a
type c potential seller becomes active only if S (c) 6= N .

2. Every active seller and buyer incurs participation cost δκ.

3. Every buyer is matched with one seller. The probability πk that a seller is matched
with k ∈ {0, 1, 2, . . .} buyers is Poisson:

πk (ζ) =
ζk

k! eζ
, (2)

where ζ is the endogenous ratio of active buyers to active sellers.5 Consequently
a seller may end up being matched with zero buyers, one buyer, two buyers, etc.

5 In a market with M sellers and ζM buyers, the probability that a seller is matched with k buyers
is πMk = ζM

k
1
M

k
1− 1

M

ζM−k. Poisson’s theorem (see, for example, Shiryaev, 1995) shows that
limM→∞ πMk = πk.
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4. Each buyer simultaneously announces a bid B (v) to the seller with whom he
is matched. We assume that, at the time he submits his bid, each buyer only
knows the endogenous steady-state probability distribution of how many buyers
with whom he is competing. After receiving the bids, the seller either accepts or
rejects the highest bid. Denote by S (c) the minimal bid acceptable to a type c
seller. If two or more buyers tie with the highest bid, then the seller uses a fair
lottery to choose between them. If a type v buyer trades in period t, then he
leaves the market with utility v − B(v). If a type c seller trades at price p, then
she leaves the market with utility p− c where p is the bid she accepts.

5. All remaining traders carry over to the next period.

Traders discount their expected utility at the rate β ≥ 0 per unit time; e−βδ is therefore
the factor by which each trader discounts his utility per period of time.

To formalize the fact that the distribution of trader types within the market’s steady
state is endogenous, let TS be the measure of active sellers in the market at the beginning
of each period, TB be the measure of active buyers, FS be the distribution of active seller
types, and FB be the distribution of active buyer types. The corresponding densities are
fS and fB and, establishing useful notation, the right-hand distributions are F̄S ≡ 1−FS
and F̄B ≡ 1− FB. The ratio ζ is therefore equal to TB/TS.

By a steady state equilibrium we mean one in which every seller in every period
plays a symmetric, time invariant strategy S (·) , every buyer plays a symmetric, time
invariant strategy B (·) , and both these strategies are always optimal. Let WS (c) and
WB (v) be the sellers and buyers’ interim utilities for sellers of type c and the buyers
of type v respectively, i.e, they are beginning-of-period, steady-state, equilibrium net
payoffs conditional on their types. Given the friction δ, a market equilibrium Mδ con-
sists of strategies {S,B}, traders’ masses {TS , TB}, and distributions {FS , FB} such that
(i) {S,B}, {TS , TB}, and {FS, FB} generate {TS, TB} and {FS , FB} as their steady state
and (ii) no type of trader can increase his or her expected utility (including the contin-
uation payoff from matching in future periods if trade fails) by a unilateral deviation
from the strategies {S,B}, and (iii) equilibrium strategies {S,B}, masses {TS , TB} , and
distributions {FS , FB} are common knowledge among all active and potential traders.
The equilibrium is required assumed to be subgame perfect.

Three points need emphasis concerning this definition. First, since within a given
match buyers announce their bids simultaneously and only then does the seller decide to
accept or reject the highest of the bids, subgame perfection implies that a seller whose
highest received bid is above her total dynamic opportunity cost of c + e−βδWS (c)
accepts that bid. In other words, a seller’s strategy is her full dynamic opportunity
cost,

S (c) = c+ e−βδWS (c) ,

and is independent of the number of buyers who are bidding, i.e., S (c) is her reservation
price. Second, beliefs are simple to handle because our twin assumptions that there are
continuums of traders and that all matching is anonymous and independent imply that
off-the-equilibrium path actions do not cause any inference ambiguities. Third, every
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trader who enters eventually succeeds in trading, i.e., exit only takes place as a result
of trade. This fact, as the proof of Proposition 8 below demonstrates, insures that, as
the period length becomes short, the prices at which trades occur in the steady state
must converge to the Walrasian price pW .

Define c̄ and v to be the maximal seller and minimal buyer types that choose to
enter. These are the marginal participation types. Define c, p, and p̄ to be the minimal
reservation price, minimal bid, and maximal bid that are made in equilibrium. Formally,
let AS ⊂ [0, 1] and AB ⊂ [0, 1] be the sets of active traders’ types; then

c̄ ≡ sup{c | c ∈ AS},
v ≡ inf {v | v ∈ AB} ,
c = inf {S (c) | c ∈ AS} ,
p = inf {B (v) | v ∈ AB} ,
p̄ = sup {B (v) | v ∈ AB} .

Given an equilibrium Mδ, we index with δ both its components Sδ, Bδ, FSδ, FBδ, TSδ,
TBδ, and ζδ and its descriptors c̄δ, vδ, cδ, pδ, and p̄δ. With this notation we can state
our convergence result:

Theorem 1 LetMδ be a market equilibrium in which trade occurs, let {c̄δ, vδ, cδ, pδ, p̄δ}
be the descriptors of its equilibrium strategies, and let WSδ (c) and WBδ (v) be traders’
interim expected utilities. Then

lim
δ→0

cδ = lim
δ→0

c̄δ = lim
δ→0

vδ = lim p
δ
= lim

δ→0
p̄δ = pW . (3)

In addition, each trader’s interim expected utility converges to the utility he would realize
if the market were perfectly competitive:

lim
δ→0

WSδ (c) = max [0, pW − c] (4)

and
lim
δ→0

WBδ (v) = max [0, v − pW ] . (5)

Sections 3 and 4 below prove this. In section 5 we prove existence for sufficiently small
δ:

Theorem 2 For all sufficiently small δ > 0, an equilibrium Mδ exists in which positive
trade occurs.

The purpose of the restriction to equilibria in which positive trade occurs is to rule
out the trivial, no-trade equilibrium in which neither buyers nor sellers ever enter the
market.

The intuition for our convergence result can be understood through the following
logic. In a match in which a buyer is bidding for an object, the "type" that is relevant
is not his static type v but, rather, his full dynamic opportunity value

IBδ (v) = v − e−βδWBδ (v) .
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Similarly the cost that is relevant to a type c seller is not c, but is her full dynamic
opportunity cost

ISδ (c) = c+ e−βδWSδ (c) .

When the buyers bid in the auction, they act as if their types were drawn from the
density hBδ (·) of IBδ (v) and the sellers’ types were drawn from the density hSδ (·) of
ISδ (c). Since limδ→0WSδ (c) = max [0, pW − c] and limδ→0WBδ (v) = max [0, v − pW ],
the theorem indicates that, as the time period length δ → 0, the distributions of the "dy-
namic types" IBδ (v) and ISδ (c) become degenerate: both become concentrated around
the same point, namely pW . Viewed this way, as δ → 0, the dynamic matching and bar-
gaining market in equilibrium progressively exhibits less and less heterogeneity among
buyers and sellers until there is none–the relevant traders’ types converge to pW and
the incomplete information vanishes. The underlying driver causing the heterogeneity
to vanish as δ → 0 is the option value that each trader’s optimal search generates.

It is important to point out that in the full information matching and bargaining
models of Gale (1987) and Mortensen and Wright (2002) this same mechanism drives
convergence: the option value that optimal search creates causes the distributions of
buyers and sellers’ full opportunity costs to become degenerate as the friction goes to
zero. Once this understood, our result that incomplete information does not disrupt
convergence is natural. The parallel, however, is not perfect because the proof of con-
vergence in the complete information models depends on the details of the complete
information bargaining used.

Figure 1 is a table of graphs illustrating the general character of these equilibria
and the manner in which they converge. These computed examples assume that the
primitive distributions GS and GB are uniform on [0, 1], equal masses of buyers and
sellers consider entry each unit of time (i.e., a = 1), and the participation cost is
κ = 0.01.6 The left column shows an equilibrium for δ = 0.4 while the right column
shows an equilibrium for δ = 0.2. Traders’ costs and values, c and v, are on each graph’s
abscissa. The top graph in each row shows strategies: sellers’ strategies S (c) are to the
left and above the diagonal while buyers’ strategies B (v) are to the right and below
diagonal. Because masses of entering traders are equal and their cost/value distributions
are uniform, the Walrasian price is 0.5; this is the horizontal line cutting the center of
the graph. Observe also that B (v) and S (c) are not defined for non-entering types.
The middle graph in each column shows the endogenous densities, fS and fB, of active
traders in the equilibrium. The density fS for active sellers is on the left and the density
for active buyers on the right. Note that to the right of c̄ the density fS is zero because
sellers with c > c̄ choose not to enter. Similarly, to the left of v the density fB is zero.
The bottom graph in each column shows the equilibrium densities hS and hB of the full
opportunity costs and values.

Comparison of the strategies in the top two graphs illustrates the convergence of all
the descriptors {c̄δ, vδ, cδ, pδ, p̄δ} toward pW as δ decreases from 0.4 to 0.2. Comparison

6 In computing these equilibria we fit sixth degree Chebyshev polynomials to a system of differen-
tial equations and boundary conditions that correspond to the first order conditions and steady state
conditions of the problem. The Mathematica program that was used is available upon request.
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Figure 1: Equilibrium strategies and associated steady state densities. The left column
of graphs is for δ = 0.4 and the right column is for δ = 0.2. The top row shows buyer
and seller strategies S and B. The middle row graphs the densities fS and fB of the
traders’ types and the bottom row graphs the densities hS and hB of the traders’ full
opportunity costs and values.
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of the two bottom graphs shows the reduction of incomplete information as δ decreases.
In these equilibria the presence of incomplete information reduces the efficiency of the
equilibria as a result of each buyer shading his bid below his full dynamic value IBδ (v) .
This loss, however, is less in the right graph with its lower value of δ because of the
greater concentration of the two densities in the neighborhood of 0.5.

One final comment concerning the model and theorems is important. In setting
up the model we assume that traders use symmetric pure strategies. We do this for
simplicity of exposition. At a cost in notation we could define trader-specific and mixed
strategies and then prove that they in fact must be symmetric and (essentially) pure
because of the anonymous nature of matching and the strict monotonicity of strategies.
To see this, first consider the implication of anonymous matching for buyers. Even if
different traders follow distinct strategies, every buyer would still draw his opponents
from the same population of active traders.7 Therefore, for a given value v, every buyer
will have the identical best response correspondence. Second, we show below that every
selection from this correspondence is strictly increasing; consequently, the best response
is pure apart from a measure zero set of values where jumps occur. These jump points
are the only points where mixing can occur, but because their measure is zero, the
mixing has no consequence for the maximization problems of the other traders.

3 Basic properties of equilibria

In this section we derive formulas for probabilities of trade and establish the strict
monotonicity of strategies. These facts are inputs into the next two sections’ proofs.
We separate them out because they apply for all δ > 0.

3.1 Discounted ultimate probability of trade and participation cost

An essential construct for the analysis of our model is the discounted ultimate probabil-
ity of trade. It allows a trader’s expected gains from participating in the market to be
written as simply as possible. Let, in the steady state, ρS (λ) be the probability that in
a given period a seller who chooses reservation price λ trades and, similarly, let ρB (λ)
be the probability that a buyer who bids λ trades. Also, let ρ̄S (λ) = 1 − ρS (λ) and
ρ̄B (λ) = 1− ρB (λ) .

Define recursively PB (λ) to be a buyer’s discounted ultimate probability of trade if
he bids λ:

PB (λ) = ρB (λ) + ρ̄B (λ) e
−βδPB (λ) .

Therefore

PB (λ) =
ρB (λ)

1− e−βδ + e−βδρB (λ)
. (6)

Observe that the formula incorporates traders’ time discounting into the probability
calculation. The parallel recursion for sellers implies that

7This is strictly true because we assume a continuum of traders.
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PS (λ) =
ρS (λ)

1− e−βδ + e−βδρS (λ)
. (7)

This construct is useful within a steady state equilibrium because it converts the
buyer’s dynamic decision problem into a static decision problem. Specifically, if success-
fully trading gives the buyer an expected gain U, then his discounted expected utility
WB from following the stationary strategy of bidding λ is

WB (λ,U) = ρB (λ)U − κδ + ρ̄B (λ) e
−βδWB (λ,U) .

Solving this recursion gives the explicit formula:

WB (λ,U) = PB (λ)U −KB (λ) , (8)

where

KB (λ) =
κδ

1− e−βδ + e−βδρB (λ)
(9)

= κδ
PB (λ)

ρB (λ)

is the discounted participation cost over the buyer’s lifetime in the market. Similarly,

WS (λ,U) = PS (λ)U −KS (λ) , (10)

where

KS (λ) =
κδ

1− e−βδ + e−βδρS (λ)
. (11)

In accord with our convention for non-entering types, we assume that

ρB (N ) = ρS (N ) = KB (N ) = KS (N ) = 0.
In section 3.3 we derive explicit formulas for ρB (·) and ρS (·)

3.2 Strategies are strictly increasing

This subsection demonstrates the most basic property that our equilibria satisfy: strate-
gies are strictly increasing. We need the following preliminary result.

Lemma 3 In equilibrium, PB [B (·)] is non-decreasing and PS [S (·)] is non-increasing
over [0, 1]. The buyers for whom v > v elect to enter, while the buyers for whom v < v
do not:

(v, 1] ⊂ AB, [0, v) ⊂ ĀB.

The type v is indifferent between entering and not entering. Similarly,

[0, c) ⊂ AS , (c, 1] ⊂ ĀS

and the type c̄ is indifferent between entering or not.
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Proof. WB(v) = supλ∈R∪{N}(v − λ)PB(λ) − KB (λ) = (v − B (v))PB (B (v)) −
KB (B (v)) is the upper envelope of a set of affine functions. It follows by the envelope
theorem that WB (·) is a continuous, increasing and convex function. Because WB is
continuous, the definition of v = inf {v : v ∈ AB} implies that (i) WB (v) = 0 and v
is indifferent between entering or not, and (ii) the types v < v prefer not to enter.
Further, convexity implies that W 0

B (·) is non-decreasing. By the envelope theorem
W 0

B(·) = PB [B (·)] ; PB [B (·)] is therefore non-decreasing at all differentiable points.
Milgrom and Segal’s (2002) theorem 1 implies that at non-differentiable points v0 ∈ [0, 1]

lim
v→v0−

W 0
B (v) ≤ PB

¡
B
¡
v0
¢¢ ≤ lim

v→v0+
W 0

B (v) .

Thus PB [B (·)] is everywhere non-decreasing for any best-response B. Further, Milgrom
and Segal’s theorem 2 implies that

WB (v) =WB (v) +

Z v

v
PB [B (x)] dx for v ≥ v. (12)

Since v is indifferent between entering or not, we can choose a best-response eB in which
v is active, while eB (v) = B (v) for v 6= v. eB may different from B at v = v, since in eB,
the type v is active, while in B it may not be. Importantly, the function WB (·) is the
same for both B and eB, since by Milgrom and Segal’s theorem 2, the envelope condition
(12) holds for any selection from the best-response correspondence. Now PB

h eB (v)i > 0
since otherwise the active buyer v would not be able to recover his positive participation
cost. Since PB

h eB (·)i is non-decreasing, PB h eB (v)i > 0 for all v ≥ v, and the envelope

condition (12) then implies that the buyers for whom v > v elect enter. The argument
for the sellers is parallel and is omitted.¥

For notational simplicity we assume from now on that v and c̄ enter. Since {v}
and {c̄} have measure 0, all our results will hold in substance under the alternative
assumption that v does not enter.

Lemma 4 B is strictly increasing on [v, 1].

Proof. Pick any v, v0 ∈ [v, 1] such that v < v0. Since PB [B (·)] is non-decreasing,
PB [B (v)] ≤ PB [B (v

0)] necessarily. We first show that B is non-decreasing on [v, 1].
Suppose, to the contrary, that B(v) > B(v0). The auction rules imply that PB (·) is non-
decreasing; therefore PB [B (v)] ≥ PB [B (v

0)]. Consequently PB [B (v)] = PB [B (v
0)] >

0. But this gives v incentive to lower his bid to B(v0), since by doing so he will buy
with the same positive probability but pay a lower price. This contradicts B being
an optimal strategy and establishes that B is non-decreasing. If B(v0) = B(v) (= λ)
because B is not strictly increasing, then any buyer with v00 ∈ (v, v0) will raise his bid
infinitesimally from λ to λ0 > λ to avoid the rationing that results from a tie. This
proves that B is strictly increasing on [v, 1].8¥

8Alternatively, one can use Theorem 2.2 in Satterthwaite and Williams (1989) with only trivial
adaptations.

12



Lemma 5 S is continuous and strictly increasing on [0, c].

Proof. Any active seller will accept the highest bid she receives, provided it is above
her total opportunity cost:

S(c) = c+ e−βδWS(c) (13)

Milgrom and Segal’s Theorem 2 implies that WS (·) is continuous and can be written,
for any active seller type c as

WS (c) = WS (c̄) +

Z c̄

c
PS(S(x))dx (14)

=

Z c̄

c
PS(S(x))dx

where the second line follows from the definition of c̄ and the continuity of WS (·).
Combining (13) and (14) we see that

S(c) = c+ e−βδ
Z c̄

c
PS(S(x))dx

for all sellers that are active.
When combined with equation (13) , it also implies that S (·) is continuous. There-

fore, for almost all active sellers c ∈ [0, c],

S0(c) = 1− e−βδPS[S(c)] > 0 (15)

becauseW 0
S (c) = −PS [S(c)]. Since S (·) is continuous, this is sufficient to establish that

S (·) is strictly increasing for all active sellers c ∈ [0, c].¥

Lemma 6 c < B (v) < v, S (c̄) = c̄ < p̄, and B (v) ≤ c̄.

Proof. Given that S is strictly increasing, S (0) = c is the lowest reservation price
any seller ever has. A buyer with valuation v < c does not enter the market since he
can only hope to trade by submitting a bid at or above c, i.e. above his valuation. In
equilibrium, any buyer who enters the market must submit a bid below his valuation
and above c, since otherwise he is unable to recover a positive participation cost. It
follows that c < B (v) < v. Similarly, a seller who is only willing to accept a bid at or
above p̄ never enters the market, since she is unable to recover her participation cost.
This implies S (c̄) < p̄. Any active seller has acceptance strategy given by (13), so in
particular S (c̄) = c̄.

Finally, suppose that B (v) > c̄. Then the buyer for whom v = v bids more than
necessary to win the object: he can only be successful if there are no rival buyers, and
when this is the case, bidding c̄ is sufficient to secure acceptance of the bid by the
seller.¥

All these findings are summarized as follows.
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Proposition 7 Suppose that {B,S} is a stationary equilibrium. Then, over [v, 1] and
[0, c̄], B and S are strictly increasing, S is continuous and, almost everywhere on [0, c̄],
has derivative

S0(c) = 1− e−βδPS [S(c)].

Finally, B and S have the properties that c < p < v, S (c̄) = c̄ < p̄ and p ≤ c̄.

The strict monotonicity of B on [v, 1] and S on [0, c̄] allows us to define V and C, their
inverses over [B (v) , B (1)] and [S (0) , S (c̄)]:

V (λ) = inf {v ∈ [0, 1] : B(v) > λ} ,
C(λ) = inf {c ∈ [0, 1] : S(c) > λ} .

3.3 Explicit formulas for the probabilities of trading

Focus on a seller of type c who in equilibrium has a positive probability of trade. In a
given period she is matched with zero buyers with probability π0 and with one or more
buyers with probability π̄0 = 1− π0. Suppose she is matched and v∗ is the highest type
buyer with whom she is matched. Since by Proposition 7 each buyer’s bid function B (·)
is increasing, she accepts his bid if and only if B (v∗) ≥ λ where λ is her reservation
price. The distribution from which v∗ is drawn is F ∗B (·): for v ∈ [v, 1],

F ∗B(v) =
1

π̄0 (ζ)

∞X
i=1

πi (ζ) [FB (v)]
i (16)

where FB (·) is the steady state distribution of buyer types and {π0, π1, π2, . . .} are the
probabilities with which each seller is matched with zero, one, two, or more buyers.
Note that this distribution is conditional on the seller being matched. Thus if a seller
has reservation price λ, her probability of trading in a given period is

ρS (λ) = π̄0 [1− F ∗B(V (λ))] . (17)

This formula takes into account the probability that she is not matched in the period.
A similar expression obtains for ρB (λ), the probability that a buyer submitting bid

λ successfully trades in any given period. In order to derive this expression, we need a
formula for ωk (ζ), the probability that the buyer is matched with k rival buyers. If TB
is the mass of active buyers and TS is the mass of active sellers, then ωk (ζ)TB, the mass
of buyers participating in matches with k rival buyers, equals k + 1 times πk+1 (ζ)TS ,
the mass of sellers matched with k + 1 buyers:

ωk (ζ)TB = (k + 1)πk+1 (ζ)TS .

Solving, substituting in the formula for πk+1 (ζ) , and recalling that ζ = TB/TS shows
that ωk (ζ) and πk (ζ) are identical:

ωk (ζ) =
(k + 1)

ζ
πk+1 (ζ) =

(k + 1)

ζ

ζk+1

(k + 1)! eζ
= πk (ζ) . (18)
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The striking implication of this is that the distribution of bids that a buyer must beat
is exactly the same distribution of bids that each seller receives when she is matched
with at least one buyer.

Turning back to ρB, a buyer who bids λ and is the highest bidder has probability
FS(C (λ)) of having his bid accepted. This is just the probability that the seller with
whom the buyer is matched will have a low enough reservation price so as to accept
his bid. If a total of j + 1 buyers are matched with the seller with whom the buyer is
matched, then he has j competitors and the probability that all j competitors will bid
less than λ is [FB (V (λ))]

j . Therefore the probability that the bid λ is successful in a
particular period is

ρB (λ) = FS (C (λ))
X∞

j=0
ωj (ζ) [FB (V (λ))]

j

= FS (C (λ))
X∞

j=0
πj (ζ) [FB (V (λ))]

j (19)

= FS (C (λ)) [π0 + π̄0F
∗ (V (λ))] .

4 Proof of convergence

Theorem 1 consists of two parts: “the law of one price” part, which given the charac-
terization in Proposition 7, reduces to

lim
δ→0

cδ = lim
δ→0

p̄δ = lim
δ→0

vδ = pW ,

and the efficiency part

lim
δ→0

WSδ (c) = max [0, pW − c] , lim
δ→0

WBδ (v) = max [0, v − pW ]

These are dealt with separately in Propositions 8 and 12 below.

Proposition 8 limδ→0 cδ = limδ→0 p̄δ = limδ→0 vδ = pW .

The proof of this Proposition relies on three Lemmas.

Lemma 9 limδ→0 (p̄δ − c̄δ) = 0.

Proof. Suppose not, i.e., there exists an ε > 0 such that p̄δ − c̄δ > ε along a
subsequence. Let

bδ = p̄δ − ε/2,

vδ = sup {v : Bδ (v) ≤ bδ} .
Let the probability γδ be the seller’s equilibrium belief that the maximum bid in a given
period is greater than or equal to bδ. If limδ→0 γδ = γ > 0 along a subsequence, the
seller for whom cδ = (c̄δ + bδ) /2 would prefer to enter for small enough δ. The reason
is this. By definition bδ − c̄δ > ε/2 and, therefore, bδ − cδ > ε/4. Consequently, if seller
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Figure 2: Construction of b0, b00, c0δ and c00δ used in the proof of Theorem 1
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cδ sets her offer to be λ = bδ, then the gain U she realizes if she trades is at least ε/4
and her per period probability of trade is ρS (λ) > γ. Inspection of formulas (7) and
(11) establishes that as δ → 0 her discounted probability of trade goes to 1 and her
discounted participation costs goes to 0. Therefore her expected utility, as given by
(10), is

WS (λ,U) = PS (λ)U −KS (λ) >
ε

4
> 0

as δ → 0, a contradiction.
If, on the other hand, limδ→0 γδ = 0 along all subsequences, then the buyer for

whom v = 1 would prefer a deviation to bδ. If he deviates, then in the limit, as δ → 0,
his probability of trading in a given period, ρB (bδ), approaches 1. This is an immediate
implication of the observation that follows (18): γδ is not only the probability that the
maximum bid a seller receives in a given period is greater than or equal to bδ, but it
is also the probability that the maximum competing bid the type 1 buyer must beat is
greater than or equal to bδ. Therefore γδ → 0 implies that deviating to bδ results in his
discounted probability approaching 1 and discounted participation cost approaching 0.
Consequently, this buyer deviates and secures the lower price bδ, which completes the
Lemma’s proof.¥

Lemma 10 limδ→0
³
p̄δ − p

δ

´
= 0.

The proof is by contradiction: pick a small ε, suppose p̄δ − p
δ
> ε > 0 along a

subsequence, and define

b0δ = p̄δ − 1
3
ε, (20)

b00δ = p̄δ − 2
3
ε.

Note that b00δ − p
δ
> ε

3 . Select a buyer and let

φδ = FSδ
¡
Cδ

¡
b0δ
¢¢

be the equilibrium probability that the seller with whom he is matched in a given period
would accept a bid that is less than or equal to b0δ. Lemma 9 guarantees that the seller
for whom S (c) = b0δ exists, at least for small enough δ. Select a seller and let

ψδ =
∞X
k=0

πk
£
FBδ

¡
Vδ
¡
b0δ
¢¢¤k

= π0 + π̄0F
∗
Bδ

¡
Vδ
¡
b0δ
¢¢
.

be the equilibrium probability that, in a given period, she receives either no bid or
the highest bid she receives is less or equal to b0δ. Observe that ψδ is the equilibrium
probability that a buyer’s bid b0δ is maximal in a given match; this follows directly from
formula (19) for ρB (λ) . Given these definitions, this Lemma’s proof consists of three
steps.
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Step 1. The fraction of sellers for whom Sδ (c) ≤ b0δ does not vanish as δ → 0, i.e.,
φ ≡ limδ→0φδ > 0.

Suppose not. Then φδ → 0 along a subsequence. Fix this subsequence and fix some
period, say period 0. Let Nδ be a sequence of integers whose values are chosen later in
the proof. Define, without loss of generality, the time segment Υδ of length Nδ periods
that begins with period 0 and ends with period Nδ. Define three masses of sellers :

• m+
Nδ is the mass of sellers who enter the market within time segment Υδ and for

whom b00δ ≤ Sδ (c) ≤ b0.

• m−Nδ is the mass of sellers who both enter and exit the market within time segment
Υδ and for whom b00δ ≤ Sδ (c) ≤ b0δ.

• mδ the steady-state mass of active sellers for whom b00δ ≤ Sδ (c) ≤ b0δ.

The assumption that φδ → 0 implies that mδ → 0. We show next that mδ → 0 entails
cδ → b00δ . This establishes a contradiction because Proposition 7 states that cδ < p

δ
and

by construction p
δ
+ ε

3 < b00δ .
The fraction of sellers in the mass m+

Nδ that do not exit during the time segment
Υδ is

m+
Nδ −m−Nδ

m+
Nδ

≤ mδ

m+
Nδ

because the surviving massm+
Nδ−m−Nδ of sellers who entered in time segment Υδ cannot

exceed the total, steady state of the mass mδ of sellers with reservation prices in the
interval [b00δ , b

0
δ]. Therefore the fraction of the sellers in m+

Nδ that have traded within
time segment Υδ is at least

1− mδ

m+
Nδ

. (21)

In the mass m+
Nδ, pick a seller c

00
δ who enters in period 0 and for whom

Sδ
¡
c00δ
¢
= b00δ .

Such a seller c00δ always exists because Sδ is continuous (see Proposition 7) and g is a
lower bound on the density of entering sellers. This seller has as low reservation price
as any other seller in m+

Nδ and has the full time segment Υδ in which to consummate
a trade. She therefore has as high probability of trading within Υδ as any other seller
in m+

Nδ. Let rδ be her probability of trading within the time segment Υδ. It is therefore
at least as great as the average probability of trading across all sellers in m+

Nδ:

rδ ≥ 1− mδ

m+
Nδ

. (22)

Now, since the slope of Sδ is at most one (see the formula in Proposition 7), it follows
that

m+
Nδ ≥

ε

3
gδNδ, (23)
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because m+
Nδ is minimized when the slope of Sδ is the largest (i.e., equal to 1) and the

density gS is minimal. Substituting this lower bound on m+
Nδ into (22) gives

rδ ≥ 1− mδ
ε
3gδNδ

.

For seller c00δ her discounted probability of trading PSδ (b
00
δ ) from setting reservation price

b00δ is bounded from below by

PSδ
¡
b00δ
¢ ≥ e−βδNδ

µ
1− mδ

ε
3gδNδ

¶
. (24)

The right-hand side understates the discounted probability of trade because, literally,
the lower bound is the discounted probability of trader c00δ waiting the full Nδ periods
before attempting to trade, having only probability 1−mδÁ( ε3gδNδ) of succeeding in
that period, and then never trying again.

Set the period length to be

Nδ = min

½
k : k is integer, k ≥

√
mδ

δ

¾
.

Substitution of this choice into (24) and taking the limit as δ → 0 shows that discounted
probability of seller c00δ trading approaches 1 from below because mδ → 0:

lim
δ→0

PSδ
¡
Sδ
¡
c0δ
¢¢ ≥ lim

δ→0
exp (−β√mδ)

µ
1−
√
mδ
ε
3g

¶
= 1.

Recall from Proposition 7 that, for almost all c ∈ [0, c̄),
S0δ (c) = 1− e−βδPSδ [Sδ (c)] .

Since PSδ (Sδ (c)) ≥ PSδ (b
00
δ ) for c ≤ b00δ and Sδ is increasing on [0, c̄), it follows that, for

all seller types c ∈ [0, c00δ ], PSδ [Sδ (c)]→ 1 and

lim
δ→0

S0δ (c) = 0.

Consequently, since Sδ is continuous,

cδ = Sδ (0)→ b00δ .

This is in contradiction to cδ < p
δ
< b00δ − ε/3. Therefore it can not be that φδ → 0.

Step 2. If the ratio of buyers to sellers ζδ is bounded away from 0, then the
probability ψδ that the highest bid in a given meeting is less than b0δ is also bounded
away from 0. Proof of this step stands alone and is not based on the result in step 1 of
this proof.

Formally, if limδ→0ζδ > 0, then ψ ≡ limδ→0 ψδ > 0. Suppose not. Then ψδ → 0 and
ζδ → ζ > 0 along a subsequence. Fix this subsequence and recall that by construction

b00δ > p
δ
+

ε

3
. (25)
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First, we show that the seller with cost c00δ such that S (c
00
δ ) = b00δ prefers to enter. Since

ζδ → ζ and ψδ → 0, for all δ sufficiently small, the probability that he meets a buyer

for whom B (v) ≥ b0δ = b00δ + ε/3 is at least 12

³
1− e−ζ

´
. This is because, with ψδ → 0,

(i) almost every bid she receives is greater than b0δ and (ii) her probability of getting
at least one bid is approaching 1− e−ζ . Therefore, as δ → 0 her discounted probability
of trading with a buyer for whom Bδ (v) ≥ b0δ approaches 1 even as her discounted
participation costs, given by formula (9), approach 0. Consequently, the profit of the
c00δ seller, in the limit as δ → 0, is at least ε/3, and she will choose to enter.

Second, since she chooses to enter, it must be that c00δ ≤ c̄δ. Therefore the slope of
S for c ∈ [0, c00δ ) satisfies

S0 (c) = 1− e−βδPSδ (c)→ 0

since PSδ (Sδ (c)) ≥ PSδ (Sδ (c
00
δ )) and PSδ (Sδ (c

00
δ )) → 1. Therefore cδ → b00δ , a contra-

diction of (25) and Proposition 7’s requirement that cδ < p
δ
.

Step 3. For small enough δ, a buyer for whom v = 1 prefers to deviate to bidding
b0δ instead of p̄δ. There are two cases to consider.

Case 1. limδ→0ζδ > 0. We show, using both steps 1 and 2 of this proof, that
bidding p̄δ cannot be equilibrium behavior for a type 1 buyer. Recall that φδ is the
probability that a seller will accept a bid less than b0δ and that, according to step 1,
φ = limδ→0 φδ > 0. Additionally, recall that ψδ is the probability that the maximal
rival bid a buyer faces in a given period is no greater than b0δ and that, according to
step 2, limδ→0 ψδ = ψ > 0. For small enough δ > 0, this second probability is bounded
from below by (1/2)ψ. It follows that, for small enough δ, the buyer who bids b0δ (i)
wins over all his rival buyers with probability greater than (1/2)ψ, and (ii) has his bid
accepted by the seller with probability greater than (1/2)φ. Therefore, as δ → 0, the
buyer who bids b0δ trades with a discounted probability approaching 1 and a discounted
participation cost approaching 0. Consequently deviating to b0δ gives him a profit of at
least 1−b0δ, which is greater than 1− p̄δ, that profit he would make with his equilibrium
bid B (1) = p̄δ. Therefore deviation to b0δ is profitable for him.

Case 2. limδ→0ζδ = 0. Fix a subsequence such that ζδ → 0. The proof of this
case relies only on the result in step 1 of this proof. The probability of meeting no rival
buyers in a given period is e−ζδ and, since ζδ → 0, this probability is at least 1/2 for
sufficiently small δ. In any given period, for a type 1 buyer and for all small δ and (i)
the probability of meeting no rivals is at least 1/2 and (ii) the probability of meeting
a seller who would accept the bid b0δ is at least (1/2)φ. It follows that as δ → 0, his
discounted probability of trading approaches 1 and his discounted participation cost
approaches 0. Therefore deviating to b0δ gives him a profit of at least 1 − b0δ > 1 − p̄δ,
which proves that a deviation to b0δ is profitable for him.

Step 3 completes the Lemma’s proof because it contradicts the hypothesis that,
limδ→0(p̄δ − p

δ
) = ε > 0.¥

Lemma 11 limδ→0
³
vδ − p

δ

´
= 0.
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Proof. Suppose not. Recall that B (vδ) ≡ p
δ
and that Proposition 7 states that

vδ > p
δ
. Pick a subsequence such that vδ−pδ ≥ η > 0 along it. Define ξδ =

1
2

³
p
δ
+ vδ

´
and observe that ξδ − p

δ
≥ η/2 and ξδ < vδ. The latter inequality implies that a type

ξδ buyer does not enter the market because his expected utility is non-positive. But
suppose to the contrary that a type ξδ buyer enters and bids p̄δ. Bidding p̄δ guarantees
that he wins the auction in whatever match he finds himself, i.e., ρBδ (p̄δ) = 1. Therefore
in the first period after he enters he earns profit of

ξδ − p̄δ − κδ

= ξδ − p
δ
+ p

δ
− p̄δ − κδ

≥ η

2
+ p

δ
− p̄δ − κδ

→ η

2

because Lemma 10 states that, as δ → 0, p̄δ − p
δ
→ 0. This contradicts the equilibrium

decision of the type ξδ buyer not to enter.¥
Proof of Proposition 8. Consider any sequence of equilibria δn → 0. The descrip-

tors p̄δ and vδ converge because

lim
δ→0

(p̄δ − vδ) = lim
δ→0

(p̄δ − vδ)− lim
δ→0

(p
δ
− vδ) (26)

= lim
δ→0

(p̄δ − p
δ
)

= 0

where limδ→0(pδ − vδ) = 0 (from Lemma 11) implies the first equality and limδ→0(p̄δ −
p
δ
) = 0 (from Lemma 10) implies the third equality. Proposition 7 establishes that

c̄δ ∈ [pδ, p̄δ); therefore Lemma 10 implies
lim
δ→0

(p̄δ − c̄δ) = 0. (27)

Pick a convergent subsequence of
³
vδ, p̄δ, c̄δ, pδ

´
and denote its limit as (p∗, p∗, p∗, p∗).

Traders who choose to become active in the market exit only by trading. Therefore
in the steady state the mass of sellers entering each period must equal the mass of
buyers entering each period:

GS (c̄δ) = a ḠB(vδ). (28)

Taking the limit in (28) along the convergent subsequence as δ → 0, we get

GS (p∗) = a ḠB(p∗).

This is just equation (1) that defines the Walrasian price; therefore p∗ = pW . Since pW
is the common limit of all convergent subsequences, it follows that the original sequence³
vδ, p̄δ, c̄δ, pδ

´
converges to the same limit:

lim
δ→0

p̄δ = lim
δ→0

p
δ
= lim

δ→0
c̄δ = lim

δ→0
vδ = pW . (29)
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All that remains is to show that cδ also converges to pW . The type c̄δ seller who is
on the margin between participating and not participating must in expectation be just
recovering his participation cost each period. Recall that Sδ (c̄δ) = c̄δ. Since the price
this seller receives is no more than the highest bid, p̄δ, it follows that

ρSδ [Sδ (c̄δ)] (p̄δ − c̄δ) ≥ κδ.

Therefore
ρSδ [Sδ (c̄δ)]

δ
≥ κ

p̄δ − c̄δ
→∞

by (27). The discounted probability of trade may be written as

PSδ [Sδ (c̄δ)] =
ρSδ [Sδ (c̄δ)]

1− e−βδ + e−βδρS [Sδ (c̄δ)]
(30)

=
1

1−e−βδ
δ

ρSδ[Sδ(c̄δ)]
δ

+ e−βδ
.

It follows that limδ→0 PS [Sδ (c̄δ)] = 1 because limδ→0 1−e
−βδ
δ = β and limδ→0

ρSδ[Sδ(c̄δ)]
δ =

∞. Further, for all c ∈ [0, c̄δ],
lim
δ→0

PSδ [Sδ (cδ)] = 1 (31)

because PSδ [Sδ (·)] is decreasing. Therefore
S0δ (c) = 1− e−βδPSδ (Sδ (c)) ,

the slope of Sδ on [0, c̄δ], converges to 0. Together with the continuity of Sδ this implies
that cδ → c̄δ, which completes the proof of the proposition.¥

The next Proposition proves the second part of Theorem 1.

Proposition 12 limδ→0WSδ (c) = max [0, pW − c] and limδ→0WBδ (v) = max [0, v − pW ] .

Proof. Equation (31) establishes that, for all c ∈ [0, c̄δ], limδ→0 PSδ [Sδ (c̄δ)] = 1.
The same argument, slightly adapted, shows that, for all v ∈ [vδ, 1], limδ→0 PBδ [Bδ (v)] =
1. Thus the buyer for whom v = vδ must just recover its participation cost each period:

ρBδ [Bδ (vδ)] (vδ −Bδ (vδ)) = ρBδ

³
p
δ

´³
vδ − p

δ

´
= κδ.

Therefore
ρBδ

³
p
δ

´
δ

=
κ

vδ − p
δ

→∞

by Lemma 11 and, exactly as with (30) ,

lim
δ→0

PBδ

³
p
δ

´
= lim

δ→0

ρBδ

³
p
δ

´
1− e−βδ + e−βδρBδ

³
p
δ

´ = 1
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Since PBδ (·) is increasing, this establishes that limδ→0 PBδ [Bδ (vδ)] = 1 for all vδ ∈
[vδ, 1].

The envelope theorem–see equations (12) and (14)–implies that

WSδ (c) =

Z c̄δ

c
PSδ [Sδ (x)] dx,

WBδ (v) =

Z v

vδ

PBδ [Bδ (x)] dx.

Passing to the limit as δ → 0 gives limδ→0WSδ (c) = max [0, pW − c] and limδ→0WBδ (v) =
max [0, v − pW ] because c̄δ → pW and vδ → pW .¥

5 Full trade equilibria and existence

Recall that Proposition 7 shows that every equilibrium must satisfy B (v) ≤ S (c̄). The
intuition for this is that the type v buyer can only trade if there is no rival buyer.
Without competition he should certainly not bid more than S (c̄), the minimum bid
that is always accepted by any seller. If, in fact, B (v) = S (c̄), then the type c̄ seller,
who among active sellers is the seller with the highest cost, always trades if she is
matched with at least one buyer, even if he is the lowest valued active buyer. This, of
course, means both that any seller with cost less than c̄ also trades if she is matched and
that a buyer fails to trade only because he is beaten in the bidding by another buyer.
We call an equilibrium of this kind a full trade equilibria because every match results
in a trade. In this section we characterize full-trade equilibria and prove their existence
for all sufficiently small δ > 0. Proposition 13 proves that the full-trade equilibria are
fully specified by the vector of parameters (c̄, v, ζ) . Figure 3 illustrates an equilibrium
of this special type. Proposition 14 proves that a unique full-trade equilibrium exists
for all sufficiently small δ > 0. Theorem 2 is then a corollary of Proposition 14.

Before introducing the equations that determine (c̄, v, ζ) , we derive sellers and buy-
ers’ probabilities of trade as a function of their types c and v and the buyer-seller ratio
ζ. As a consequence of the equilibrium being full trade buyers’ trade probabilities
are independent of sellers’ equilibrium strategy S. That the sellers’ strategy does not
feed back and affect the buyers’ trade probabilities and strategy implies that the market
fundamentals–GS, GB, a, κ, β, and δ–fully determine the equilibrium. This fact drives
both the uniqueness and existence results of this section.

Given that the market is in a steady state, within every period the cohort of buyers
who has the highest valuations in their matches and therefore trades is replaced by an
entering cohort of equal size and composition. Therefore F ∗B, the distribution function
of the maximal valuation within a match, is equal to the distribution of v in the entering
cohort conditional on v ≥ v:

F ∗B (v) =
GB (v)−GB (v)

1−GB (v)
. (32)

Let ρ̂B (v) be the probability that a type v buyer trades in any given period. It, as
reference back to equation (19) and its derivation explains, is equal to the probability
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that he bids against no rival buyers
¡
ω0 = e−ζ

¢
plus the complementary probability¡

ω̄0 = 1− e−ζ
¢
times the probability that the maximal value among the rival buyers in

his match is no greater than v:9

ρ̂B (v) = e−ζ +
³
1− e−ζ

´
F ∗B (v) . (33)

The discounted trading probability of a type v buyer is therefore

P̂B (v) =
ρ̂B (v)

1− e−βδ + e−βδρ̂B (v)
. (34)

The hats on ρ̂B (·) and P̂B (·) emphasize that these probabilities are functions of the
buyer’s value v, not of his bid B (v) .

With this notation in place we can introduce the equations that determine (c̄, v, ζ)
in a full trade equilibrium. First, since every meeting results in a trade, the mass of
entering buyers must equal the mass of entering sellers in the steady state:

GS (c̄) = a [1−GB (v)] (35)

= aḠ(v).

Second, the buyer for whom v = v must be indifferent between being active and staying
out of the market. The type v buyer only trades in a period when there are no rival
buyers; his probability of trading is ω0 = e−ζ . Since in a full-trade equilibrium B (v) =
S (c̄) and Proposition 7 states that S (c̄) = c̄ , indifference necessarily implies that his
expected gains from trade in any period, (v − c̄)e−ζ equals his participation cost:

(v − c̄)e−ζ = κδ. (36)

Third, parallel logic applies to any seller for whom c = c̄. This seller always trades
in any period in which he is matched with at least one buyer; the probability of this
event is 1− π0 = π̄0 = 1− e−ζ . Denote the expected price that any seller receives as p.
Note that this expected price is not a function of the sellers’ type c; it is the same for all
active sellers in a full-trade equilibrium. Then, since the c̄ seller is indifferent between
trading and staying out of the market, it must be that

(p− c̄) (1− e−ζ) = κδ. (37)

In order to find the price p, we use the envelope theorem to solve for the bidding
strategies of the active buyers (i.e., those buyers for whom v ≥ v) as follows:

WB (v) = (v −B(v)) P̂B (v)−K0 (v) (38)

=

Z v

v
P̂B (x) dx,

9Formula (19),
ρB (λ) = FS (C (λ)) [π0 + π̄0F

∗ (V (λ))] ,

illustrates why the full trade case is different than the general case. In the full trade case the factor
FS (C (λ)) is degenerate: for all λ ∈ p, p̄ , FS (C (λ)) = 1. As a consequence the seller’s inverse strategy
C (λ) does not affect ρB (·) . In the general case, an interval [p, λ ] ⊂ p, p̄ may exist such that, for all
λ ∈ [p, λ ], FS (C (λ)) < 1 and C (λ) does affect ρB (·) .
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where P̂B (v) is the type v buyer’s discounted probability of trading and

K0 (v) =
κδ

1− e−βδ + e−βδρ̂B (v)

is his discounted participation cost. Solving equation (38) for B (v) gives

B (v) = v − κδ

ρ̂B (v)
− 1

P̂B (v)

Z v

v
P̂B(x)dx. (39)

Observe that this formula calculates B(v) directly; it is not a fixed point condition. The
expected price p that a seller receives is the expected value of B (v) for that buyer who
has the highest valuation:

p =

Z 1

v
B (v) dF ∗B(v) =

1

1−GB (v)

Z 1

v
B (v) dGB(v) (40)

where the second equality follows from equation (32).
Equations (35-37) form a system of three equations in three unknowns (c̄, v, ζ)

that, for given δ, must hold in any full-trade equilibrium. In Proposition 13 below
we prove that the converse claim is also true: there is a unique full-trade equilibrium
that corresponds to any given solution (c̄, v, ζ). The system (35-37)–the characterizing
equations–therefore identifies a full-trade equilibrium.

Proposition 13 For given δ > 0, any full-trade equilibrium must satisfy conditions
(35− 37) . Conversely, for given δ > 0, any solution (c̄, v, ζ) ∈ (0, 1)2 × (0,∞) to (35-
37) corresponds to a unique full-trade equilibrium.

Proof. We have already seen that equations (35-37) must hold in any full-trade
equilibrium. We also know that the strategies S and B are strictly increasing. It
remains to prove the second part of the Proposition that, for given δ > 0 and solution
(c̄, v, ζ) ∈ (0, 1)2 × (0,∞) to system (35-37), a unique full-trade equilibrium exists.
To show this we need to start with the solution values (c̄, v, ζ) , construct the unique
steady-state densities fB and fS and strategies B and S, compute the masses TB and
TS that these densities and strategies imply, and check that the ratio of these masses
equals the solution value ζ. The key insight to our construction is the observation that
the strategy for buyers can be constructed separately from the strategy for sellers; the
solution (c̄, v, ζ) is a sufficient link between the two.

Consider buyers first. The lowest active buyer’s type, v, is a component of the
characterizing equations’ solution. The steady-state distribution, F ∗B, of the maximal
rival buyer’s type is then given by formula (32). The constraint simplification theorem
in Milgrom (2004, p. 105) implies that the envelope condition (38) is sufficient for B to
be a best-response. Buyers’ unique symmetric mutual best-response strategy for v ≥ v
is therefore given by (39). For v < v, the best-response is not to enter. Observe that
the formula implies, as it should, that B is an increasing function and that B (v) = c̄.

25



,c v

( ), ( )S c B vδ δ

( )S cδ δ

δc δv0 1

1

( )0Sδ

( )1Bδ

δc

Figure 3: Strategies in a full-trade equilibrium
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The distribution FB is uniquely recoverable from F ∗B, the distribution of the maximal
value. Equations (33) and (32)) imply that in the steady-state,

ρ̂B (v) = e−ζ +
³
1− e−ζ

´ GB (v)−GB (v)

1−GB (v)
. (41)

On the other hand, direct computation shows that

ρ̂B (v) =
∞X
k=0

e−ζ
ζk

k!
FB (v)

k

= e−ζ[1−FB(v)]
∞X
k=0

e−ζFB(v)
[ζFB (v)]

k

k!

= e−ζ[1−FB(v)] (42)

Equating the right-hand sides of (41) and (42) and solving, we obtain the unique steady-
state distribution FB that corresponds to ζ and v in the characterizing equations’ solu-
tion:

FB (v) = 1 +
1

ζ
log

·
e−ζ +

³
1− e−ζ

´ GB (v)−GB (v)

1−GB (v)

¸
. (43)

To complete the construction of the buyer’s part of equilibrium, we must compute
TB, the steady-state mass of buyers. Mass balance of buyers implies

TBF
0
B (v) ρ̂B (v) = aδgB (v) . (44)

Substitution of (41) and (43) into this and solving gives the formula:

TB = ζ
aδ(1−GB (v))

1− e−ζ
= ζ

aδḠB (v)

1− e−ζ
. (45)

A review of this construction shows that strategy B, the distribution F ∗B, and the
mass TB depend only on the fundamentals GB, a, δ, and the solution (c̄, v, ζ) to the
characterizing equations, but not the sellers’ strategy S. This insulation of the buyers’
optimal actions from the sellers’ actions is the key insight behind this construction and
overall proof design.

Turning to sellers, we already know the marginal participation type, c̄, among sellers;
it is is a component of (c̄, v, ζ) . A seller trades in any period in which she is matched
with at least one buyer; this probability is π̄0 = 1 − π0 = 1 − e−ζ . Notice that it is
independent of her type. Using formula (6) , her discounted probability of trade is

P̂S =
1− e−ζ

1− e−βδ + e−βδ (1− e−ζ)
. (46)

For active sellers - those with costs c ≤ c̄ - formula (14) gives their continuation values,

WS (c) =

Z c̄

c
P̂Sdx

= P̂S (c̄− c) ,
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and formula (13) gives their equilibrium strategies,

S (c) = c+ e−βδWS (c)

= c+ e−βδP̂S (c̄− c) .

Note that this is a linear function of c with slope 1 − e−βδP̂S. Sellers for whom c > c̄
best-respond by not entering.

To construct the unique, steady state distribution of seller types, FS , observe that
the seller’s best-response strategy S is increasing on [0, c̄] and satisfies S (c̄) = c̄. Since
all active sellers trade with the same probability in any period, the distribution of their
types in the market FS is just the distribution of the entering cohort conditional on
c ≤ c̄:

FS (c) =
GS (c)

GS (c̄)
. (47)

To complete the construction of the seller’s part of equilibrium, we must find the steady-
state mass of active sellers TS. Mass balance holds every period in a steady state;
therefore TS

¡
1− e−ζ

¢
= δGS (c̄) and, solving,

TS =
δGS (c̄)

1− e−ζ
. (48)

To complete the proof, we need to check that, besides being mutual best-responses
and inducing their own steady-state distributions FB and FS, the strategies result in
steady-state masses of buyers and sellers that have the required ratio ζ that was com-
puted as a component of the solution to the characterizing equations. This is confirmed
by dividing equation (45) by (48):

TB
TS

= ζ
a(1−GB (v))

GS (c̄)
= ζ

aḠB (v)

GS (c̄)

= ζ,

where the last line follows from market clearing, equation (35).¥
We now turn to existence of equilibria for sufficiently small δ. The second part of

Proposition 13 implies that all we need to show is that, for sufficiently small δ, a solution
to the characterizing equations (35-37) exists. This is most easily done if we eliminate
c̄ from the system. Substitute

c̄ = v − κδeζ (49)

from equation (36) into equation (35) to obtain

GS

³
v − κδeζ

´
− a (1−GB (v)) = 0. (50)

Equation (35) can be re-written as

p = c̄+
κδ

1− e−ζ

= v − κδeζ +
κδ

1− e−ζ
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The new, two equation system in the three variables (v, ζ, δ) is then

GS

³
v − κδeζ

´
− a (1−GB (v)) = 0 (51)

p− v + κδ
eζ − 2
1− e−ζ

= 0 (52)

Recall that p depends on v and ζ via (40), so it really is a system in three variables.
The method of proof we use has four steps. First–tediously–we substitute (40)

into the system to eliminate p. Second, we extend the domain of system (51—52) from the
economically meaningful set D = (0, 1)×R× (0,∞) (i.e., δ is restricted to be positive)
to the mathematically more useful set D1 = (0, 1)×R× (−1,∞). Third, we prove that
at δ = 0 the system has a unique solution (v, ζ, δ) = (pW , ζ0, 0) . Finally, we apply the
implicit function theorem in a neighborhood of δ = 0 to establish that, for each δ in the
neighborhood, a unique solution (vδ, ζδ, δ) exists to the system. The complication in
this step is showing that Jacobian of the system is non-zero at δ = 0. For each positive
δ in the neighborhood, Proposition 13 implies that the solution (vδ, ζδ) characterizes a
unique full-trade equilibrium.

Proposition 14 For all sufficiently small δ > 0. there exists a unique full-trade equi-
librium (c̄δ, vδ, ζδ).

Proof. By (40),

p− v =
1

1−GB (v)

Z 1

v
(B (v)− v) dGB(v) (53)

and , by (39),

B (v)− v = v − v −
Z v

v

P̂B (x)

P̂B (v)
dx− κδ

ρ̂B (v)

=

Z v

v

Ã
1− P̂B (x)

P̂B (v)

!
dx− κδ

ρ̂B (v)
.

Algebra shows that

1− P̂B (x)

P̂B (v)
= βδ

1− e−βδ

βδ

ρ̂B (v)− ρ̂B (x)

ρ̂B (v) (1− e−βδ + e−βδρ̂B (x))
; (54)

substituting this into (39) gives

B (v)− v = δ

µ
β
1− e−βδ

βδ

Z v

v

ρ̂B (v)− ρ̂B (x)

ρ̂B (v) (1− e−βδ + e−βδρ̂B (x))
dx− κ

ρ̂B (v)

¶
.

Inserting this expression for B (v)−v into (53) and substituting the resulting expression
for p− v into (52) gives

δL (v, ζ, δ) = 0, (55)
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where

L (v, ζ, δ) =
1

1−GB (v)

Z 1

v
β
1− e−βδ

βδ

Z v

v

ρ̂B (v)− ρ̂B (x)

ρ̂B (v) (1− e−βδ + e−βδρ̂B (x))
dxdGB (v)

− 1

1−GB (v)

Z 1

v

κ

ρ̂B (v)
dGB (v)

+κ
eζ − 2
1− e−ζ

. (56)

The second term of L can be written as

1

1−GB (v)

Z 1

v

κ

ρ̂B (v)
dGB (v)

=
κ

1−GB (v)

Z 1

v

1

e−ζ + (1− e−ζ) GB(v)−GB(v)
1−GB(v)

dGB (v)

=
κ

1− e−ζ
log

1

e−ζ

=
κζ

1− e−ζ
;

substituting this into (56) results in

L (v, ζ, δ) =
1

1−GB (v)

Z 1

v
β
1− e−βδ

βδ

Z v

v

ρ̂B (v)− ρ̂B (x)

ρ̂B (v) (1− e−βδ + e−βδρ̂B (x))
dxdGB (v)

+κ
eζ − ζ − 2
1− e−ζ

Simplifying further, L (v, ζ, δ) becomes:

L (v, ζ, δ) =
1

(1−GB (v))
2

Z 1

v
β
1− e−βδ

βδ

Z v

v

¡
1− e−ζ

¢
(GB (v)−GB (x))

ρ̂B (v) (1− e−βδ + e−βδρ̂B (x))
dxdGB (v)

+κ
eζ − ζ − 2
1− e−ζ

. (57)

Given this work, the system (51-52) is, for δ > 0, equivalent to the system

GS

³
vδ − κδeζδ

´
− a (1−GB (vδ)) = 0 (58)

L (vδ, ζδ, δ) = 0 (59)

where we have indexed v and ζ with δ to indicate that we solve this system for them
as functions of δ. Note that we have divided the second equation through by δ; this is
essential in order to ensure a non-zero Jacobian. Now extend the domain of the system
from D = (0, 1) × R × (0,∞) to D1 = (0, 1) × R × (−1,∞); this domain includes the
set {(v, ζ, δ) ∈ D1 : δ = 0} . Recall formula (33) for ρ̂B and observe that ρ̂B (v) , ρ̂B (x) ,
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and
¡
1− e−βδ

¢
/βδ are continuously differentiable functions of v, ζ and δ on this larger

domain.10 The function L, as a composition, is therefore continuously differentiable on
D1.

The first term in (57) is an increasing function of ζ. This is because 1 − e−ζ is
increasing in ζ and ρ̂B (·) is decreasing in ζ. The second term,

¡
eζ − ζ − 2¢ / ¡1− e−ζ

¢
,

is also increasing in ζ, for

d

dζ

eζ − ζ − 2
1− e−ζ

=
eζ
¡
ζ + e2ζ − 3eζ + 3¢
(1− e−ζ)2

> 0

because e2ζ − 3eζ + 3 = ¡eζ − 3
2

¢2
+ 3− ¡32¢2 > 0. Therefore
∂L (v, ζ, δ)

∂ζ
> 0, (60)

i.e., L is increasing in ζ for all values of v and δ in D1.
This fact enables us to claim that a ζ0 exists such that (v, ζ) = (pW , ζ0) is the unique

solution to system (58-59) at δ = 0. This is seen in two steps. First, when δ = 0 equation
(58) reduces to GS (v0) − a (1−GB (v0)) = 0, which is just equation (1) defining pW ,
the Walrasian price. Therefore, at δ = 0 and irrespective of the value of ζ, pW is the
unique solution to (58) , the system’s first equation. Second, given that δ = 0 and
vδ = pW , notice that limζ→0 L (pW , ζ, 0) = −∞ and limζ→∞L (pW , ζ, 0) =∞ and recall
that L (pW , ζ, 0) is a continuous function increasing in ζ. These facts together imply
that a unique ζ0 exists solving L (pW , ζ, 0) = 0. Thus, as claimed, (v, ζ) = (pW , ζ0) is
the unique solution to the system at δ = 0.

The Jacobian J of the system (58-59) at (v, ζ, δ) = (pW , ζ0, 0) is not zero:

J =

¯̄̄̄
¯ gS (pW ) + agB (pW ) 0

∗ ∂L(pW ,ζ0,0)
∂ζ

¯̄̄̄
¯

= (gS (pW ) + agB (pW ))
∂L (pW , ζ0, 0)

∂ζ
> 0,

where the last line follows from inequality (60). Consequently, the implicit function
theorem applies so for all small enough δ > 0 a unique solution (vδ, ζδ) exists. Given
that for positive δ a one-to-one map exists between (vδ, ζδ) pairs and full trade equilibria,
this proves that there is a unique full-trade equilibrium for all sufficiently small δ > 0.
This proves Proposition 14. It also proves Theorem 2, which states that for sufficiently
small δ an equilibrium (not necessarily full trade) exists. Theorem 2 makes no mention
of uniqueness because, for a particular value of δ, the existence of a unique full trade
equilibrium does not rule out another equilibrium that is not full trade.¥

10The expression 1− e−βδ /βδ is indeterminate at δ = 0, but selecting limδ→0 1− e−βδ /βδ to
be its value at that point makes it continuous and differentiable over all of D1.
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6 Conclusions

In this paper we have shown that convergence to the competitive price and alloca-
tion can be achieved with a decentralized matching and bargaining market in which
all traders have private information about their values/costs. The significance of this
contribution is that it directly addresses a critical shortcoming in each of two litera-
tures it combines. Existing matching and bargaining models that demonstrate robust
convergence ignore the ubiquity of incomplete information. Existing double auction
models robustly demonstrate convergence in the presence of incomplete information,
but ignore the equally ubiquitous future opportunities for trade that exist in almost all
real markets. Our model and results cure both these shortcomings.

Of the many open questions that remain we briefly discuss three of the most im-
portant. First, no constrained optimal benchmark has been derived for the dynamic
matching and bargaining model with incomplete information. Presumably mechanism
design techniques can be used to establish such a benchmark.11 Then it would be possi-
ble to compare the realized efficiency of models such as ours that have specific matching
and bargaining protocols against the efficiency of the constrained optimal mechanism.

Second, while our model provides a set of natural sufficient conditions for conver-
gence, an appropriate long term goal is to characterize fully the conditions that are both
necessary and sufficient for convergence. The paper of Wolinsky (1988) suggests that a
homogeneous product is necessary. Similarly, the papers of Serrano (2002) and DeFraja
and Sákovics (2002) suggests that global market clearing operating through endogenous
distributions of active traders is necessary in some form. Additionally Serrano’s paper
suggests that admitting a continuum of bid values may be necessary.

Third, we assume both an independent private value environment and that sellers
have unit supply and buyers have unit demand. Recent papers by Fudenberg, Mobius,
and Szeidl (2003), Cripps and Swinkels (2003), and Reny and Perry (2003) on the
static double auction have relaxed these assumptions. Specifically, Fudenberg, Mobius,
and Szeidl show existence and a rate of convergence to truth-telling in a model with
correlated private costs/values. Cripps and Swinkels, using a more general model of
correlated private values, dispense with the unit supply/unit demand assumption and
show that the relative inefficiency of the static double auction is O

¡
1

n2−ε
¢
where ε is

an arbitrarily small constant. Reny and Perry allow traders’ costs/values to have a
common value component and their private signals to be affiliated. They show that, if
the market is large enough, an equilibrium exists, is almost ex post efficient, and almost
fully aggregates the traders’ private information, i.e., the double auction equilibrium
approaches the unique, fully revealing rational expectations equilibrium that exists in
the limit. Obviously generalizing our model in these same directions is important.

If these and other questions can be answered adequately in future work, then this
theory may become useful in designing and regulating decentralized markets with incom-
plete information in much the same way auction theory has become useful in designing
auctions. The ubiquity of the Internet with its capability for facilitating matches and

11Satterthwaite and Williams (2002) have done this for static double auctions.
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reducing period length makes pursuit of this end attractive.
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